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Critical microjets in collapsing cavities 
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Inward microjets are commonly observed in collapsing cavities, but here we show that 
jets with exceptionally high velocities and accelerations occur in certain critical flows 
dividing jet formation from bubble pinch-off. An example of the phenomenon occurs 
in the family of flows which evolve from a certain class of initial conditions : the initial 
flow field is that due to a moving point sink within the cavity. 

A numerical study of the critical flow shows that in the neighbourhood of microjet 
formation the flow is self-similar. The local accelerations, velocities and distances scale 
as P2, t p - l  and tp  respectively, where /3 = 0.575. The velocity potential is approximately 
a spherical harmonic of degree f. 

1. Introduction 
Since the suggestion by Kornfeld & Suvorov (1944) that the damage to solid walls 

from cavitation bubbles may be due to the impact of high-speed, inward-pointing jets 
involved in bubble collapse, many experimental and numerical studies have been 
carried out which amply confirm this phenomenon. For references to the literature see 
for example Blake, Taib & Doherty (1986). The occurrence of high-speed jets has also 
been observed in bubbles bursting at a water surface (Blanchard & Woodcock 1980), 
in axisymmetric standing waves on water (Longuet-Higgins 1983) and in steep, two- 
dimensional waves meeting a vertical wall (Cooker & Peregrine 1981). 

The above examples indicate that the spontaneous formation of high-speed jets at a 
time-dependent free surface is a general phenomenon of some interest. However, most 
theoretical studies have been numerical and there are few analytical models. The 
Dirichlet hyperboloid suggested by Longuet-Higgins (1 983) can model only a part of 
the flow. The two-dimensional generalizations of the Dirichlet hyperbola suggested by 
Longuet-Higgins (1993, 1994) depend on F. John's semi-Lagrangian representation in 
a complex plane (John 1953), and cannot easily be extended to axisymmetric motions. 

However, though we cannot expect to find many exact solutions satisfying the 
nonlinear free-surface conditions for all times t ,  nevertheless we can hope to make 
progress by studying solutions in which the initial conditions say at time t = 0, are 
given in terms of simple analytic functions, involving only a few parameters. We can 
then follow the development of the flow by numerical time stepping, using a boundary- 
integral technique, and see how this development changes as we vary the parameters 
of the initial flow. 

Such was the approach adopted in the present paper. As a promising model we 
considered first the flow around a cavity in which there was a moving point source (or 
sink). The motion of the source introduces an asymmetry into the initial pressure 
distribution. At the same time, by allowing the strength S of the source to vary with 
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time in a certain way (see $2 below) it was possible to arrange that the flow near a 
certain point on the bubble surface approximates the flow in a Dirichlet hyperboloid. 
Hence the development of a jet was expected. Moreover the surfaces of constant 
pressure were initially of almost spherical shape, and could plausibly be taken as the 
initial surface of the bubble. 

As shown in $2, this leads to initial pressure contours given in polar coordinates p ,  8, 
by 

p-4 + 2p-2 cos B + Dp-1 = c, (1.1) 

where C and D are constants: C is proportional to the pressure while D is a basic 
parameter of the flow. The initial flow resembles a Dirichlet ellipsoid or hyperboloid 
according to whether D > 2 or D < 2. 

The boundary-integral method used for time stepping the solution is described in $3. 
In $4 are shown the results for forward integrations, t > 0. These did indeed show re- 
entrant jets as expected. In some cases the particle accelerations were large, though 
always finite. 

However, integration in the reverse direction ( t  < 0) gave an unexpected result. Jets 
were usually found to occur (after a time delay) on the opposite side of the bubble. 
Moreover for some values of the parameters (say D = 1, C < 0.4) a jet was not formed, 
but instead a small cavity, or bubble, was split off from the main cavity, as is sometimes 
observed experimentally, see Pumphrey & Crum (1988) and Medwin & Beaky (1991). 
The critical flow dividing jet formation from bubble split-off corresponded to C w 0.4. 
At this value of C the calculated values of the velocity and acceleration became 
extremely large, perhaps infinite. 

A close examination of the critical flow, see $5,  reveals that it is locally self-similar, 
the velocities and accelerations are proportional to negative powers of ( t -  t,) where t ,  
is the critical instant. In $6 we see that the velocity potential is described approximately 
(but not exactly) by a spherical harmonic of degree v = a. A discussion follows in $7. 

2. The moving sink 
Consider a point sink of strength 47cS moving in a straight line with instantaneous 

velocity V, as in figure 1. Both S and V are in general functions of the time t .  In a 
stationary frame of reference the instantaneous streamlines are all directed radially 
inwards towards S, with velocity potential 

as in figure 1 (a), r being the radial distance. If we take a frame of reference moving with 
velocity V with the sink S lying on the z-axis at a distance a(?) from the origin 0, then 
the streamlines will appear as in figure 1 (b), with a stagnation point at 0 provided that 

S/a2 = V. (2.2) 

(2.3) 

The velocity potential will be given by 

4 = S[x2 + y 2  + (z - a)2]-1/2 - Vz. 

In the neighbourhood of the origin 0, this becomes 

1 
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FIGURE 1. Instantaneous streamlines for a moving point sink in a reference frame which is 
(a) stationary, (b) moving with the sink. 

neglecting terms of order ( z / u ) ~ .  Thus locally the flow has the form of a Dirichlet 
hyperboloid : 

$ = +A(2z2-x2-y2)+f(t) ,  (2.5) 

where A = 2S/a3,  f = S/a. (2.6) 

As the flow develops in time it will of course diverge from the Dirichlet hyperboloid. 
Nevertheless it would appear interesting to adopt the velocity potential (2.3) as an 
initial condition, with an appropriate free surface, and see what happens. 

We first calculate the pressure field corresponding to equation (2.3). Writing 

p cos 6 = ( z  - a), p sin 6 = (x2 + y2)1/2 

$ = S/P, V $  = - (S/P3) ( x ,  Y ,  z - a), $t = S / p  + s4z - w3, 

(2.7) 

(2.8) 

and using the stationary frame of reference (figure 1 a) we have 

where a dot denotes dldt. Since 

-2p = (V$)"+$,+F(t) 

we find - .2(p-p,)  = T+ - + 2 s u 7  , 
s2 P (",s cos*) P 

(2.9) 

(2.10) 

where p ,  denotes the pressure at infinity. Now from (2.1) we have S = a2 V, and if the 
stagnation point 0 in figure 1 (b) is to remain fixed momentarily, then 6 = V.  Hence 

(2.1 1 )  

where D = 2 S / ( a v 2 ) .  (2.12) 

Writing alp = K we see that the surfaces of constant pressure p are given by 

K 4 + 2 K 2 C O S 8 + D K  = c, (2.13) 

where C is a constant. We may take any of these surfaces as the free surface initially. 



186 M .  S .  Longuet-Higgins and H .  Oguz 

10 

5 

z 

0 

-5 

10 - 

z -  

0 -  

I " "  1 " " I  

-2 
-4 -2 0 2 4 

X 

FIGURE 2. Contours of constant pressure for a moving point sink: 
(a) D = 2, (b )  D = 1, ( c )  D = 0. 

In Appendix A it is shown that we expect the initial flow to resemble a Dirichlet 

D 3 2. (2.14) 

We shall be interested mainly in the case D < 2. 
To determine the pressure contours, it is convenient to normalize the coordinates by 

setting a = 1. For given values of the constants C and D we may then solve equation 
(2.13) for K as a function of 8. Since p = 1 / ~  we may use p and 8 as coordinates to plot 
the pressure contours. 

The pressure contours in the cases D = 2, 1 and 0 are shown in figures 2 (a), 2(b) and 
2(c) .  In all cases the contours are very close together in the neighbourhood of the origin 
( p  = 1,8 = x ) ,  indicating a very high acceleration locally. In the case D = 1 (figure 2b) 
there is a pronounced pressure maximum on the axis at p = 1.35, 8 = x. Figure 2(c) is 
remarkable in that the innermost contour is almost exactly (but not quite) circular, as 

ellipsoid or hyperboloid according to whether 
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may be verified by the reader from equation (2.1 1) with D = 0, C = 1. One contour has 
horizontal asymptotes, so the configuration may correspond approximately to a 
bubble approaching a free surface. 

3. Time-stepping method 
Given the initial shape of the bubble and the initial velocity potential 

# = l / P  (3.1) 

on the bubble surface, we can integrate the motion by a boundary-integral method as 
follows. Because of the high accelerations and inertial forces we neglect gravity and 
surface tension. The time rate of change of q5 following a particle is then given by 

(3.2) 

where p ,  and pB denote the pressure at infinity and at the bubble surface respectively; 
p B  is held constant. Note that initially (p,-pe) = icy2. Thus equation (3.2) gives 
dq5/dt on the bubble surface at time t = to and hence # on the new surface at time 
t = to + dt. To find the normal component a#/an at time (to + dt) we solve the Dirichlet 
problem for q5 using the boundary-integral method described by Oguz & Prosperetti 
(1993) for axisymmetric flows. 

Typically, 40 surface points were used to discretize the bubble surface. Convergence 
tests were carried out with 80 surface points and no appreciable difference was noted 
as a result of higher resolution. After each step, surface points were uniformly 
distributed to reduce the instabilities commonly associated with the boundary-integral 
technique. In certain cases where sharp curvatures are formed it was necessary to use 
more points and achieve a high concentration of surface points near the regions of high 
curvature. In this case, the position of each point was assigned such that the arclength 
s, at the ith point is 

d#/dt = KV#Y +(Pa -PA 

where L is the total arclength of the curve defining the bubble surface on the ( R , Z ) -  
plane. here and y are the distribution parameters. We set y = 3.5 and /3 = 0.5 to 
obtain closely spaced points near the south pole of the bubble where s = 0. The 
modification to this procedure is trivial when high resolution is needed near the north 
pole. 

A second-order-accurate Crank-Nicholson technique was used to step the solution 
in time. The implicitness of this procedure requires iteration at each time step. 
Convergence was assumed when the norm of the total correction was less than 0.01 YO. 
The number of iterations did not exceed ten in most cases. We used a variable time step 
in order to resolve the nearly singular behaviour of the flow and to reduce the 
computation time. Our past experience with the code (Oguz & Prosperetti 1993) led 
us to adopt the following formula for the time step: 

(3.4) 

where Asmin is the minimum segment length (minimum distance between two 
neighbouring points) and A‘t is the previous time step. 

In the absence of an external force, the total energy must be constant throughout the 
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FIGURE 3. Successive profiles of the free surface in four cases when D = 1 and t > 0. 
Time interval between profiles: (a) 0.1, (b) 0.1, (c) 0.2, (d )  0.4. 
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FIGURE 4. (a) Acceleration and (b) velocity of a surface particle on the axis of symmetry (south 
pole) when D = 1 : -, C = 1 ; . . a ,  0.8; ----, 0.4; ---, 0.25. 
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FIGURE 5. Successive profiles of the free surface in the case D = 0 when t > 0. 
Time interval between profiles: (a) 0.04, (b) 0.04, (c) 0.08, ( d )  0.08. 
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FIGURE 6. Acceleration and velocity of a surface particle on the axis of symmetry (south pole) 
when D = 0. For line styles see figure 4. 
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evolution of the flow. However, owing to regridding, discretization and time integration 
errors the total energy of the numerical simulations may deviate slightly from a 
constant. So a good test of accuracy is to monitor the total energy during the 
simulation. In all the reported cases in this paper, the total energy remained constant 
to better than 0.1 YO of the maximum kinetic energy of the system. 

4. Results 
The deformation of the free surface is shown in figure 3(a) for the typical case 

D = 1 .O, C = 1 .O. As expected, a re-entrant jet is formed, which rapidly approaches the 
opposite wall of the bubble. The corresponding acceleration and velocity of the tip of 
the jet, here called the ‘south pole’, is shown in figure 4 (solid lines). The acceleration 
peaks at the relatively high value 8 at around t = 0.13 then falls to slightly below zero 
as the jet ‘coasts’. The velocity (figure 4b) rises to about 3.5 and then levels off. In the 
same diagram are shown the velocity and acceleration for other initial contours: 
C = 0.8, 0.4 and 0.25. 

Figure 5 shows a similar set of surface profiles when D = 0 and C = 1.0,0.8,0.4 and 
0.25. This time the accelerations are considerably higher, see figure 6(a). In the case 
C = 1.0, the tip acceleration peaks at nearly 28. The tip velocity rises to nearly 6. The 
velocities and accelerations at the ‘north poles’ (0 = 0) are in these cases relatively 
small. 

An interesting result is obtained if instead of integrating forwards we integrate 
backwards from t = 0, as may be done by reversing the sign of At.  (Since there is no 
dissipation in the system, this is equivalent to considering a new problem in which the 
initial pressure and free surface are the same as before but the initial velocities are 
reversed. However in our notation we shall maintain the direction of time and speak 
of negative times t.) 

From figure 8 it will be seen that at negative times, the values of the velocity and 
acceleration at the south poles remain small, but those at the north poles can be 
extremely high. From figure 7 we see there is now a re-entrant jet at the north poles, 
with particularly high acceleration and velocities in the case C = 0.4. In fact both the 
velocity and the acceleration become immeasurably high at around t = -7.12; see 
figure 8. In the case C = 0.25 a jet is not formed directly but a bubble appears to be 
pinched off instead. Indeed this was found for all values of C less than 0.4 (and with 
D = 1). As illustration we show in figure 9 the sequence of surface profiles and velocity 
vectors when C = 0.35 and 0.45. Thus C = 0.4 seems to be a critical value for this 
family of solutions when D = 1.0. 

While these results suggest that the assumed flows could not exist as free flows over 
the entire time range - co < t < 00, nevertheless they demonstrate two interesting 
phenomena: 

(i) the possibility of a ‘jet exchange’ between two opposite poles of a nearly circular 
bubble; 

(ii) the existence, in some families of flows, of critical cases characterized by jets with 
extremely high, possibly infinite, values of the acceleration and velocity. When a 
parameter lies on one side of the critical value the jets have finite acceleration and 
velocity. On the other side, a jet is not formed, but instead a bubble is pinched off. 
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FIGURE 7. Successive profiles of the free surface in the case D = 1, C = 1, 0.8, 0.4 and 0.25. 
Time interval between profiles: (a)  0.25, (b) 0.25, (c) 0.25, ( d )  0.4. 
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FIGURE 8. Acceleration and velocity of a particle at the north pole (0 = 0) when D = 1. 
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5. The critical case 
In this section we shall examine the critical flow for indications of self-similarity, in 

the case D = 1, C = 0.4. 
Figure 8 has already indicated that the north-pole acceleration becomes large near 

a critical instant t ,  close to -7.12. In figure 10 we show ztt plotted against (t-t,) on 
a logarithmic scale, t ,  having been adjusted so as to give the best straight time fit to the 
plotted points. The result is that when t ,  = -7.123, 

ztl oc ( t -  t,)'-', p = 0.575. (5.1) 

Integration of equation (5.1) yields for the velocity zt of the tip of the jet 

ztt + B oc ( t  - t , )P - l ,  (5-2) 
where B is a constant. 

at the tip are scaled like (1- 
The value B = 0.5 gives the straight-line fit shown in figure 11. Thus the velocities 

approximately. 
To examine the similarity of the profiles in space we have plotted in figure 12 both 
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FIGURE 9. Profiles and velocity vectors at  successive times t < 0 when D = 1. (a) C = 0.45, (b) 
C = 0.35. The velocity vectors are scaled x 0.25. Note that if time were reversed, the velocity vectors 
would point inwards. 

the profiles and the particle velocity vectors at six different times t = - 7.00, - 7.02, ... , 
-7.10 on reduced scales as follows: 

and 

{ = ( t -  t1)B-lxt, 

t = ( t  - t,)B-yz, + B) 

6 = (t-t,)flx, 

6 = ( t  - tl)b(Z, + Bt + B'), 

(5.3) 

(5.4) 

where B = 0.5, B' = -5.83. In figure 13 these six profiles are superposed, and evidently 
there is a high degree of self-similarity. 

6. The velocity field 
Let us suppose that the velocity field in the neighbourhood of the north pole (0 = 0) 

is given by a simple asymptotic expression valid as t t ,  on an inner scale 6 which tends 
to 0 like (t- tl)fl. Suppose further that when x/S+ 00 this inner flow can be matched 
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10-3 10-2 lo-' 1 00 10' 

( t - t l )  

FIGURE 10. Logarithmic plot of the north-pole acceleration zW versus ( t - t , )  in the critical case 
D = 1, C =  0.4. Here t ,  = -7.12. 

FIGURE 1 1 .  Logarithmic plot of (z ,  + B) versus ( t  - t l )  where z ,  is the north-pole 
Here 1, = -7.12 and B = 0.5. 

velocity. 
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FIGURE 13. Superposition of the profiles and velocities in figure 12. 

to the ‘outer flow’ in the rest of the cavity. To determine the behaviour of the inner 
flow for large values of x/S we naturally inspect the surface profile at times t very close 
to 1,. 

Figure 14 shows an enlargement of the profile and velocity vectors when t = - 7.12. 
There is a portion of the profile when 0.1 < x < 0.5 which is relatively straight. Thus 
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FIGURE 14. Surface profile (enlarged) and velocities (unscaled) in the critical case D = 1, C = 0.4 
at t = 7.12. No scaling has been performed. 

FIGURE 15. Logarithmic plot of the speed q = [x: + (z, +0.5)2]1/2 of a surface particle versus 
distance x from the axis of symmetry. The straight-line asymptote has slope -0.747. 
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if we take (spherical) polar coordinates (r,8) with the origin 0 lying on the axis of 
symmetry near (but not at) the north pole, then over the range of x indicated the 
coordinate O will be nearly constant. So if we suppose that in this region the inner 
solution has the simple form 

(6.1) 
where P, denotes a Legendre function of some unknown degree u, the magnitude q of 
the velocity will vary as rU-l. The appropriate value of u may possibly be determined 
by examination of the velocity vectors in figure 14 as follows. 

qi a F(t) r’pY(cos 0), 

In figure 15 we have plotted the magnitude q of the reduced velocity, that is 

q = [xZ; + (zt + 0.5)2]1’2, (6.2) 

against the distance x = rsin8 (6.3) 
from the axis of symmetry. It will be seen that over the range 0.1 < x < 0.5 the velocity 
q does indeed follow the power law 

GC XU, 7 = -0.747 (6.4) 
indicated by the straight line. Thus it appears reasonable to take 

u = y+ 1 = 0.253 (6.5) 
or u = a approximately. 

Note that for non-integral values of u the Legendre function P,(cos 8) is analytic in 
0 < O < n, but with a logarithmic singularity at 8 = 5c which need not concern us, since 
the potential (6.1) need only be valid in a region 181 < 0, where 8, < 5c. From figure 14 
8, is about 120”. 

7. Analytic expressions 

of the form 

where S, h and u are constants. (Here t stands for t - tl.) To determine A note that when 
8 = constant = 0, say, then 

Combining the results of # 5  and 6 we have for the inner flow a velocity potential 

# = - Sr\r”e(cos 8), (7.1) 

qi ci tArv (7.2) 

and so 
or 
Hence 

drldt = qir cc tV-’ 

rl-” dr oc tA dt. 
r2-v cc tA+l 

provided u =k 2. Therefore r cc tfl as in 95, where 

p = (A+ I ) / ( Z - u )  (7.6) 

that is h = (2-48- 1. (7.7) 

In 5 5 ,  p was found to be 0.575 approximately. This yields A = 0.005, which is small, 
perhaps not significantly different from zero. 

The components of fluid velocity corresponding to equation (7.1) are 
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Numerical Analytical 

FIGURE 16. Comparison of the numerical profiles and velocity vectors with those given by the 
analytical expression (6. I). 

where p = cose and P: denotes dP,/dp. In figure 16 these expressions are compared 
with the numerically calculated vectors, and it will be seen that the agreement is fairly 
good over the range 0 < x <  0.5. The origin r = 0 was taken at the point 
(5,$ = (2.2370). 

8. Discussion 
We have found numerically a family of jet-like flows, with analytic initial conditions, 

in whch the velocity and acceleration may become exceedingly large near a certain 
instant t = t,. The flows are described by a parameter C such that when C takes a 
critical value C, the velocities and accelerations at t = c, are infinite. When C < C,, 
instead of a simple jet being formed a small bubble is split off from the main cavity. 
The velocities and accelerations are still high, however. A similar phenomenon appears 
in other types of flow, for example in the cavity resulting from impact of raindrops on 
a water surface, which was studied experimentally by Pumphrey & Crum (1988) and 
theoretically by Oguz & Prosperetti (1989); see also Longuet-Higgins (1990). Thus we 
may regard the present behaviour as generic. The advantage of the present family of 
flows is that the initial conditions are very simple, and given in terms of analytic 
functions. 

We have studied the behaviour of the critical flow corresponding to C = C,, and 
shown that it is locally self-similar and described by equation (7.1) approximately, 
though not exactly; see Appendix B. We may reasonably expect an exact ‘inner 
solution’ to exist, which could be matched asymptotically to the flow in the rest of the 
cavity. Moreover in neighbouring flows, when C is close to but not equal to C, we 
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might expect a more general type of asymptotic solution in which the accelerations are 
high but never infinite. The construction of such asymptotic flows and the study of the 
class of initial conditions which give rise to them would help towards a general 
understanding of jet formation, including the less violent south-pole jets seen in figures 
4 and 6. 

Appendix A. Proof of (2.12) 
From equation (2.1) it follows that 

2 s  2 s / s  2 s / s  D=-=-- -- 
aV2 V / a  cia 

since V = h. Now for a Dirichlet ellipsoid the function A(t )  of equation (2.4) is given 
by 

A = &/a, (A 2) 

where a(t) satisfies c ~ y i  + ~ 3 / ~ 3 )  = u2 (A 3) 

and L and U are positive constants. (For the hyperboloid, L c 0, see Longuet-Higgins 
1978.) Now since S = a2V = a2d it follows from (2.5) that 

A = 2S/a3 = 2ci/a. (A 4) 

Comparing (A 2) and (A 4) we see that 

a = K2a2,  

where K is some constant. Therefore 

S = a26 = & 2 & / ~ 3  

and on differentiating logarithmically 

S / S  = (&/2a)  + (E/&). 

But from equation (A 3) we find similarly 

2a la  = (3&/a) L3/(L3 +a3). (A 8) 

s / S  = (&/2a) [ 1 + 3L3/(L3 + a')] = (ci/a) (1 + +E), (A 9)  

where E = 6L3/(L3 + Ksas) .  (A 10) 

Hence 

Thus from ( A  1 )  and ( A  9 )  we have 

= 2+E.  D = -  2 s / s  
a/a 

Since by ( A  10) E has the same sign as L, this proves (2.12). 

Appendix B. Boundary conditions for the flow (7.1) 
If we neglect gravity and surface tension, the pressure p at the boundary is given by 

- p  = $ht ++(V$h)2 +At). (B 1) 



wheref* = t2('-DfTt). Since the other terms in equation (B 4) are independent of t by 
hypothesis we must have 
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Now from (6.1) and (6.10) we have 
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If C vanishes, both conditions (B 12) and (B 14) become linear in X. They can both be 
satisfied simultaneously at all points on the free surface only if 
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